Nutrition Rich Fruits and Vegetables: Status and Opportunities in the Era of Genome Editing

Suhas Gorakh Karkute 1*, Kishor Uttamrao Tribhuvan 2, Shruti Yadav 3

1 Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India 

2 School of Genomics and Molecular Breeding, ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, Jharkhand, India 

3 Department of Biochemistry, Institute of Home Economics, Delhi University, New Delhi, India


Improvement of nutrition in fruits and vegetables is one of the most important aspects of plant breeding programmes. Biofortification of food crops is necessary to alleviate the challenges of hidden hunger. Consumption of fruits and vegetables provide nutrients like vitamins, minerals, dietary fibres, antioxidants to some extent, however, they either lack or have insufficient amount of several nutrients essential for human health. Recently developed genome editing tools like CRISPR/Cas9 have been successfully utilized for improving the nutrient content of various vegetables and fruits. Considering the potential of the genome editing technique, it is possible to enhance the nutrients as well as to synthesize novel health promoting compounds in the fruits or vegetables by metabolic engineering. This article describes the status and opportunities of improving the nutrition of fruits and vegetables using genome editing approaches.

Keywords: Nutrition, CRISPR/Cas9, fruits, vegetables, genome editing 


Adli, M. (2018). The CRISPR tool kit for genome editing and beyond. Nature communications, 9(1), 1-13.

Čermák, T., Baltes, N. J., Čegan, R., Zhang, Y., & Voytas, D. F. (2015). High-frequency, precise modification of the tomato genome. Genome biology, 16(1), 1-15.

Chang, L., Wu, S., & Tian, L. (2019). Effective genome editing and identification of a regiospecific gallic acid 4-O-glycosyltransferase in pomegranate (Punica granatum L.). Horticulture research, 6.

Choi, S. H., Ahn, W. S., Jie, E. Y., Cho, H. S., & Kim, S. W. (2022). Development of late-bolting plants by CRISPR/Cas9-mediated genome editing from mesophyll protoplasts of lettuce. Plant Cell Reports, 1-4.

Clasen, B. M., Stoddard, T. J., Luo, S., Demorest, Z. L., Li, J., Cedrone, F., ... & Zhang, F. (2016). Improving cold storage and processing traits in potato through targeted gene knockout. Plant biotechnology journal, 14(1), 169-176.

Dahan‐Meir, T., Filler‐Hayut, S., Melamed‐Bessudo, C., Bocobza, S., Czosnek, H., Aharoni, A., & Levy, A. A. (2018). Efficient in planta gene targeting in tomato using geminiviral replicons and the CRISPR/Cas9 system. The Plant Journal, 95(1), 5-16.

Deng, L., Wang, H., Sun, C., Li, Q., Jiang, H., Du, M., ... & Li, C. (2018). Efficient generation of pink-fruited tomatoes using CRISPR/Cas9 system. Journal of genetics and genomics= Yi chuan xue bao, 45(1), 51-54.

González, M. N., Massa, G. A., Andersson, M., Turesson, H., Olsson, N., Fält, A. S. & Feingold, S. E. (2020). Reduced enzymatic browning in potato tubers by specific editing of a polyphenol oxidase gene via ribonucleoprotein complexes delivery of the CRISPR/Cas9 system. Frontiers in plant science, 10, 1649.

Gupta, O. P., & Karkute, S. G. (Eds.). (2021). Genome Editing in Plants: Principles and Applications. CRC Press.

Hunziker, J., Nishida, K., Kondo, A., Kishimoto, S., Ariizumi, T., & Ezura, H. (2020). Multiple gene substitution by Target-AID base-editing technology in tomato. Scientific reports, 10(1), 1-12.

Ito, Y., Nishizawa-Yokoi, A., Endo, M., Mikami, M., Shima, Y., Nakamura, N., & Toki, S. (2017). Re-evaluation of the rin mutation and the role of RIN in the induction of tomato ripening. Nature plants, 3(11), 866-874.

Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. science, 337(6096), 816-821.

Karkute, S. G., Singh, A. K., Gupta, O. P., Singh, P. M., & Singh, B. (2017). CRISPR/Cas9 mediated genome engineering for improvement of horticultural crops. Frontiers in plant science, 8, 1635.

Kaur, N., Alok, A., Kumar, P., Kaur, N., Awasthi, P., Chaturvedi, S., & Tiwari, S. (2020). CRISPR/Cas9 directed editing of lycopene epsilon-cyclase modulates metabolic flux for β- carotene biosynthesis in banana fruit. Metabolic engineering, 59, 76-86.

Kaur, N., Awasthi, P., & Tiwari, S. (2020). Fruit crops improvement using CRISPR/Cas9 system. In Genome Engineering via CRISPR-Cas9 System (pp. 131-145). Academic Press.

Li, J., Scarano, A., Gonzalez, N. M., D’Orso, F., Yue, Y., Nemeth, K. & Martin, C. (2022). Biofortified tomatoes provide a new route to vitamin D sufficiency. Nature Plants, 1-6.

Li, T., Yang, X., Yu, Y., Si, X., Zhai, X., Zhang, H., ... & Xu, C. (2018). Domestication of wild tomato is accelerated by genome editing. Nature biotechnology, 36(12), 1160-1163.

Li, X., Wang, Y., Chen, S., Tian, H., Fu, D., Zhu, B., ... & Zhu, H. (2018). Lycopene is enriched in tomato fruit by CRISPR/Cas9-mediated multiplex genome editing. Frontiers in plant science, 9, 559.

Lowe, N. M. (2021). The global challenge of hidden hunger: Perspectives from the field. Proceedings of the Nutrition Society, 80(3), 283-289.

Nakayasu, M., Akiyama, R., Lee, H. J., Osakabe, K., Osakabe, Y., Watanabe, B. & Mizutani, M. (2018). Generation of α-solanine-free hairy roots of potato by CRISPR/Cas9 mediated genome editing of the St16DOX gene. Plant Physiology and Biochemistry, 131, 70-77.

Qiu, Z., Wang, H., Li, D., Yu, B., Hui, Q., Yan, S. & Cao, B. (2019). Identification of candidate HY5-dependent and-independent regulators of anthocyanin biosynthesis in tomato. Plant and Cell Physiology, 60(3), 643-656.

Rommens, C. M., Yan, H., Swords, K., Richael, C., & Ye, J. (2008). Low‐acrylamide French fries and potato chips. Plant biotechnology journal, 6(8), 843-853.

Samtiya, M., Aluko, R. E., & Dhewa, T. (2020). Plant food anti-nutritional factors and their reduction strategies: an overview. Food Production, Processing and Nutrition, 2(1), 1-14.

Sun, B., Jiang, M., Zheng, H., Jian, Y., Huang, W. L., Yuan, Q. & Tang, H. R. (2020). Color-related chlorophyll and carotenoid concentrations of Chinese kale can be altered through CRISPR/Cas9 targeted editing of the carotenoid isomerase gene BoaCRTISO. Horticulture research, 7.

Ülger, T. G., Songur, A. N., Çırak, O., & Çakıroğlu, F. P. (2018). Role of vegetables in human nutrition and disease prevention. Veg. Importance Qual. Veg. Hum. Health, 7-32.

Ülger, T. G., Songur, A. N., Çırak, O., & Çakıroğlu, F. P. (2018). Role of vegetables in human nutrition and disease prevention. Veg. Importance Qual. Veg. Hum. Health, 7-32.

Waltz, E. (2022). GABA-enriched tomato is first CRISPR-edited food to enter market. Nature biotechnology, 40(1), 9-11.

Wu, F., Wesseler, J., Zilberman, D., Russell, R. M., Chen, C. & Dubock, A. C. (2021). Allow Golden Rice to save lives. Proceedings of the National Academy of Sciences, 118(51), e2120901118.

Yan, S., Chen, N., Huang, Z., Li, D., Zhi, J., Yu, B., ... & Qiu, Z. (2020). Anthocyanin Fruit encodes an R2R3‐MYB transcription factor, SlAN2‐like, activating the transcription of SlMYBATV to fine‐tune anthocyanin content in tomato fruit. New Phytologist, 225(5), 2048-2063.

Zhang, H., Si, X., Ji, X., Fan, R., Liu, J., Chen, K. & Gao, C. (2018). Genome editing of upstream open reading frames enables translational control in plants. Nature Biotechnology, 36(9), 894-898.

Zhi, J., Liu, X., Li, D., Huang, Y., Yan, S., Cao, B., & Qiu, Z. (2020). CRISPR/Cas9- mediated SlAN2 mutants reveal various regulatory models of anthocyanin biosynthesis in tomato plant. Plant cell reports, 39(6), 799-809.

Zhu, H., Li, C., & Gao, C. (2020). Applications of CRISPR–Cas in agriculture and plant biotechnology. Nature Reviews Molecular Cell Biology, 21(11), 661-677.

Zsögön, A., Čermák, T., Naves, E. R., Notini, M. M., Edel, K. H., Weinl, S., & Peres, L. E. P. (2018). De novo domestication of wild tomato using genome editing. Nature biotechnology, 36(12), 1211-1216.

Article ID: P0501022 RA  Preprint
Received: 05/08/2022 
Accepted: 07/11/2022
Published: 01/03/2023